بررسی اکولوژیکی درخت ارغوان در غرب ایران

محمدرضا پور، سلم مکری نیا، علی صالحی، هرمز سهیلی و پرده جعفری

نور، دانشگاه تربیت مدرس، دانشکده منابع طبیعی و علم دریایی، گروه ژنتیکداری

رشت، دانشگاه گیلان، دانشکده منابع طبیعی، گروه ژنتیکداری

یلام، اداره کل حفاظت محیط زیست

تاریخ دریافت: 24/8/1388

چکیده

به منظور بررسی اکولوژیکی درخت ارغوان افغانی (Cercis griffithii L.) (در غرب ایران و شناسایی رویه‌گاه‌های موجود) محصولات آن در روی نیمه توپورگرافی تنها و به صورت تصادفی 89 پلاک 1200 مت بزرگ یاده شد. پوشش گیاهی شامل گونه‌های درختی و درختچه‌ای خاک و عامل پیوندرگرافی منطقه‌بندی دادند. شد. اثبات از روشهای آماری، دانشگاه اغلب منجر به معنی‌داره مطلقه چهار روشگاهی شناسایی شد. نتایج نشان داد که منطقه ایلام در دریاچه ارغوان می‌باشد. pH می‌باشد. pH می‌باشد. pH می‌باشد. pH می‌باشد. این گروه بلور می‌باشد. منطقه‌ها با غلظت ده کلیپ ارغوانی اول شمار رویه‌گاه بوده. رویه‌گاه اول شامل رویه‌گاه ارغوان که با p<0.05. سیستمی، کلسیم و فسفر همبستگی مثبت داشت و یک گروه را تشکیل می‌دهد. رویه‌گاه ارغوان می‌باشد که با سیستمی، pH می‌باشد. pH می‌باشد. pH می‌باشد. pH می‌باشد. این گروه بلور می‌باشد. منطقه‌ها با غلظت ده کلیپ ارغوانی اول شمار رویه‌گاه بوده. رویه‌گاه اول شامل رویه‌گاه ارغوان که با p<0.05. سیستمی، کلسیم و فسفر همبستگی مثبت داشت و یک گروه را تشکیل می‌دهد. رویه‌گاه دوم شامل رویه‌گاه پسته و سیستمی، کلسیم و فسفر همبستگی مثبت داشت و یک گروه را تشکیل می‌دهد. رویه‌گاه دوم شامل رویه‌گاه پسته و سیستمی، کلسیم و فسفر همبستگی مثبت داشت و یک گروه را تشکیل می‌دهد.

واژه‌های کلیدی: گروه گونه اکولوژیکی، بلور ایرانی، ارغوان افغانی، ایلام، باوه

*نویسنده مسئول، تلفن: 021-22634999-222-272-2749-پست الکترونیکی: akbarim@modares.ac.ir

مقدمه

زیست می‌کند (3). اکولوژی پوشش گیاهی در طول سالنامه اخیر پیشرفت‌های زیادی را در راستای تسهیل ارتباطات پوشش گیاهی با محیط داشته است (15). استفاده از روشهای آماری کلاسیک گام به گام در رسانای حل مشکلات پیچیده در محیط و توصیف پوشش گیاهی داشته است. در بخش آمار کلاسیک روش تحلیل داده‌های تبیینی و تأییدی تاکید شده است که در آن داده‌های برگرفته از پوشش و محیط را به شکل عینی توصیف

بوم شناسی مطالعه روابط بین موجودات با یکدیگر و با محیط اطرافشان می‌باشد (7). گیاهان به عنوان گروهی از موجودات زنده در این عالم سنجش نمی‌کنند. گیاهان را تشکیل می‌دهند (2). اکولوژی پوشش گیاهی دارای جنبه‌های مهیّه است که پوشش گیاهی به عنوان یکی از اجزای حیاتی یک اکوسیستم، ماهیل تولید اولیه است که این نیز خود پایه هرم غذایی بوده و در آخر به عنوان زیستگاه عمل می‌کند که در آن انواعی از موجودات

412
روش‌های عمده رستم‌بندی پوشش‌گیاهی شامل تحلیل مؤلفه‌های اصلی، تحلیل تطبیقی غیر چت، تحلیل ارتباط‌های عاملی و تحلیل تطبیقی متعارف می‌باشد. که روش اول و دوم روش‌های تحلیل گرندیاگر و روش سوم از روش‌های تحلیل گرندیاگر مستقیم می‌باشد. در این مطالعه از تطبیقی از روش‌های آماری کلاسیک و غيرکلاسیک استفاده می‌شود (۳۳).

در این تحقیق دو روش‌گاه جنگلی یکی در شمال شهر یاوه و دیگری در کوی‌کنتی شهر ایلام مورد بررسی قرار گرفت. گونه غالب منطقه ارغوان (griffithii L. Ficus)، زیتون شکوفای (Qurucus brantii var. Persica) ایرانی (یهانیس Boiss. & Rehder)، بهند (Acer monspessulanum L.) و بادام (Amygdalus sp.) همراه آن می‌باشند. این مناطق به ناحیه توپوگرافی جنگلی (شمالی و شمال غربی) و شرایط حاکی از روش‌گاهی دارای نوع زیستی بسیار غنی بوده و نیاز ندارند. این منطقه از مناطق عمده شناخته شده شده که روندهای توده‌های مشترک و پوشش بادام حاکی است. به همین منظور برای شناسایی خصوصیات اکولوژیکی روش‌گاه درخت ارغوان، این

مناطق انتخاب گردید.

مواد و روش‌ها

این تحقیق در سه منطقه حفاظت شده ارغوان افغانی انجام گرفته است. یکی از دولت هشت سه‌شنبه ایلام با مساحت ۱۷۰ هکتار، دوم در شمال شهر ایلام با طول جغرافیایی ۵۲.۴۶ درجه شرقی و عرض ۲۸.۳۳ درجه شمالی (شکل ۱) و در این منطقه شیبی بین ۵ تا ۷۵ درصد را داشته و جهانی جغرافیایی شالیان شمال غربی، جنوبی و جنوب غربی، در این منطقه می‌باشد. متوسط بارندگی سالانه میلی متر و متوسط درجه حرارت سالانه میلی درجه مطلق ۵۸۴/۳ می‌باشد. در این منطقه شیبی بین ۵ تا ۸۰ درصد را دارا بوده و دارای جهانی جغرافیایی شمال و شمال غربی می‌باشد. متوسط بارندگی سالانه منطقه ۶۲/۱ می‌باشد. درجه حرارت سالانه منطقه دمای ۱۵/۱۰ درجه سانتی‌گراد است. خشک شکم منطقه از اواخر اردیبهشت شروع شده و تا اوائل شهر ماه آدم‌های می‌باشد (شکل ۳).
سپس با روش تصادفی سیستماتیک در رویشگاه ایلام ۴۰۰ متر مربعی انتخاب و بر روی زمین پایه گردید. و در رویشگاه پاوه ۴۹ بانه مربعی شکل به ابعاد ۳۰×۴۰ به ماسه می‌رسیدند. یک میلی‌متری از روی زمین پایه جدا شده و به تعداد ۹۹ واحد عرضی از آن استفاده گردید.

شکل ۲- منحنی آمبورنومیک منطقه مورد مطالعه ایلام

شکل ۳- منحنی آمبورنومیک منطقه مورد مطالعه پاوه

شکل ۴- دیاگرام رسته‌بندی PCA منطقه رویشی پاوه
در هر قطعه نمونه در راستای اهداف تحقیق تمامی گونه‌های درختی درختچه ای و نیز عوامل فیزیوگرافی و خاک برداشت گردید. به منظور برداشت مشخصه‌های مورد نظر، در قالب‌های اصلی گونه، تعداد پایه و ارتفاع درختان و درختچه‌ها بدایانش گردید. علاوه بر این در داخل هر پلات ارتفاع از سطح دریا به کمک ارتفاع سنج شیب به کمک شبکه سنج سونووت و جهت جغرافیایی یا نبته دقيق آزمون از بالا به پایین شبکه اندازه گیری شد. جهت جغرافیایی برای به کارگیری در تجزیه و تحلیل‌های چند متغیره، از طریق رابطه (1) (Cos (45-A) A که در ان A آزمون دامنه بود، کمی شد (2)). برای بررسی رابطه عوامل خاکی با پوشش گیاهی، در مرکز هر پلات سه نمونه از خاک در عمق 0 تا 25 سانتیمتر برداشت و با هم مخلوط شد تا یک نمونه تراکمی به دست آمد (14). نمونه‌های خاک در هر آزاد به مدت دو هفته خشک گردید و پس از انتقال به آزمایشگاه از الکهای دو میلی متری اطراف داده شد و سپس جرم مخصوص ظاهری (به روش کلاه‌خی)
جدول ۱ - نتایج مقدار ویژه و درصد واریانس در دو منطقه ایلام و پاره

<table>
<thead>
<tr>
<th>منطقه مورد مطالعه</th>
<th>مجموع درصد واریانس</th>
<th>مقدار ویژه</th>
<th>درصد واریانس</th>
<th>محور 1</th>
<th>محور 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایلام</td>
<td>۱۸/۴۹</td>
<td>۳/۱۰</td>
<td>۲/۱۱</td>
<td>۲/۸۲</td>
<td>۲/۶۲</td>
</tr>
<tr>
<td>پاره</td>
<td>۳/۷۵</td>
<td>۲/۱۳</td>
<td>۲/۷۵</td>
<td>۵/۳۱</td>
<td>۳/۷۵</td>
</tr>
</tbody>
</table>

جدول ۲ - همبستگی بین ماحورهای تجزیه و تحلیل مؤلفه‌های اصلی و متغیرهای محیطی در منطقه ایلام و پاره

<table>
<thead>
<tr>
<th>متغیر انتداژ کی ویژه</th>
<th>محور ۱</th>
<th>محور ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس</td>
<td>۱/۲۴</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>سیلیت</td>
<td>۰/۳۵</td>
<td>۰/۳۷</td>
</tr>
<tr>
<td>ماسه</td>
<td>۰/۴۱</td>
<td>۰/۷۶</td>
</tr>
<tr>
<td>pH</td>
<td>۰/۲۲</td>
<td>۰/۲۸</td>
</tr>
<tr>
<td>هرداری الکتریکی</td>
<td>۰/۱۵</td>
<td>۰/۱۶</td>
</tr>
<tr>
<td>آهک</td>
<td>۰/۱۰</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>مواد آلی خاک</td>
<td>۰/۱۱</td>
<td>۰/۱۶</td>
</tr>
<tr>
<td>نیترورزن</td>
<td>۰/۲۳</td>
<td>۰/۴۷</td>
</tr>
<tr>
<td>منیزیم</td>
<td>۰/۷۶</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۰/۴۵</td>
<td>۰/۴۵</td>
</tr>
<tr>
<td>قفسی</td>
<td>۰/۱۹</td>
<td>۰/۲۷</td>
</tr>
</tbody>
</table>

جدول ۳ - نتایج CCA در دو منطقه ایلام و پاره

<table>
<thead>
<tr>
<th>متغیر انتداژ کی ویژه</th>
<th>محور ۱</th>
<th>محور ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>رس</td>
<td>۰/۱۱</td>
<td>۰/۴۷</td>
</tr>
<tr>
<td>سیلیت</td>
<td>۰/۲۳</td>
<td>۰/۲۳</td>
</tr>
<tr>
<td>ماسه</td>
<td>۰/۲۶</td>
<td>۰/۵۶</td>
</tr>
<tr>
<td>pH</td>
<td>۰/۱۵</td>
<td>۰/۱۵</td>
</tr>
<tr>
<td>هرداری الکتریکی</td>
<td>۰/۷۶</td>
<td>۰/۷۶</td>
</tr>
<tr>
<td>آهک</td>
<td>۰/۳۷</td>
<td>۰/۴۴</td>
</tr>
<tr>
<td>مواد آلی خاک</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>نیترورزن</td>
<td>۰/۵۰</td>
<td>۰/۵۰</td>
</tr>
<tr>
<td>منیزیم</td>
<td>۰/۲۵</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>پتاسیم</td>
<td>۰/۷۷</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
</tr>
<tr>
<td>قفسی</td>
<td>۰/۲۷</td>
<td>۰/۲۷</td>
</tr>
</tbody>
</table>

۴۱۶
نتایج

در این تحقیق از تجزیه به مولفه‌های اصلی برای تعیین عوامل محیطی تأثیر گذار در هر روشیکی استفاده شد. برای این منظور در مقطع ایالام از محورهای یک و دو به جهت دارا بودن سهم بیشتری از مقدار ویژه PCA (محور یک 3/7 و محور دو 2/7 و درصد واریانس (محور اول ۲۴/۵ و محور دوم ۱۸/۲) استفاده شد (جدول ۱). ۱. موارد آن خاک تجزیه به مولفه‌های اصلی محیطی تأثیر گذار در مقطع پایه از محورهای یک و دو به جهت دارا بودن سهم بیشتری از مقدار ویژه PCA (محور یک ۳/۹ و محور دو ۷/۲) و درصد واریانس (محور اول ۳۲/۴ و محور دوم ۱۷/۲) استفاده شد (جدول ۱). ۲. موارد آلی خاک PCA (جدول ۲)، کلسیم، pH، مذاب یا هدایت الکتریکی، مولیبدن، تیترژن، و مولفه‌های مربوط به‌کلیسی و فسفر همبستگی منفی داشته و با سیلیت، pH، مذاب و یا هدایت الکتریکی، مولیبدن، تیترژن، و مولفه‌های مربوط به‌کلیسی و فسفر همبستگی منفی داشته است. ۳. موارد آلی خاک: pH مذاب و یا هدایت الکتریکی، مولیبدن، تیترژن، و مولفه‌های مربوط به‌کلیسی و فسفر همبستگی منفی داشته است. ۴. موارد آلی خاک: pH مذاب و یا هدایت الکتریکی، مولیبدن، تیترژن، و مولفه‌های مربوط به‌کلیسی و فسفر همبستگی منفی داشته است.
گوته ارغوان در دو منطقه روبیشی رس، سیلات، موارد آلی خاک، کلسیم و یونسیم می‌باشد.

در تحقیق حاضر مشخص شد که رس و سیلات از عواملی بودن که بر پراکنش گونه ارغوان تأثیر معنی داری داشتند. یعنی رویشگاه‌هایی که در اراضی رس و سیلیت بیشتری بودند، بر روی پراکنش و استقامت ارغوان در آنها به طور معمولی دارای افزایش یپدا کرده است. میزانی و همکاران (5) در تحقیق‌های سال 1387 در جنگله‌ای‌بند بلوط شمال ایلام این نتیجه به دست آمد که رویشگاه‌هایی که در اراضی رس و سیلات بالاتری هستند دارای تنوع و غنای گونه‌ای بیشتری می‌باشند.

همچنین در تحقیق حاضر مشخص شد که ماده آلی خاک همبستگی معنی داری با پراکنش گونه ارغوان دارد. می‌توان دلیل این امر را اینچنی نظیره کرد که افزایش میزان لاش‌ریگ را بهبود جمع‌آوری گیاهی و فعالیت بیشتر جانداران خاک زیر این اثر همکاری باعث شد که میزان خلو و فرح در خاک بیشتر و جرم‌های غیریکنواخت شود و نهایتاً خاک شرایط بهتری از نظر فنی‌هایی تیپا کنند. در واقع می‌توان گفت یکی از مشکلات رویشگاه‌های جنگلی بلوط کشور از میان لاش‌ریگ و به نفع کاهش فعالیت موجودات خاکی‌ها، فشرده‌شدن بیش از بخش خاک و در نتیجه آن کاهش استقرار نهایی‌ها می‌باشد. نتایج (2) در تحقیق‌های سال 1374 در جنگله‌ای بلوط این نتیجه را با دست‌آورده که بودن میزان لاش‌ریگ یکی از مهم‌ترین مشکلات جنگل‌زارس می‌باشد. محققان مکنون (8) Baruch (8) El-Ghani (8) و Spenceira (12) در سال 2000 و 2001 همکاران (17) در سال 2004 و مطالعاتی به ترتیب مشاهده دست داشتند. به همیث موارد آلی خاک در پراکنش گونه‌ها در اکوسیستم‌ها اشاره کرده‌اند. پناهی و کلسیم خاک منطقه‌ی بیشتری و در جریان از عواملی بودند که بر پراکنش گونه ارغوان تأثیر گذار بودند. افزایش درصد

ke با سیلات، موارد آلی، Amygdalus orientalis. Spach

تیترژن، نیتریز، پناهی، کلسیم و فسفر همبستگی مثبت داشته، گونه شاخص این گروه به

است. Desf. Subsp. mutica

جهت جغرافیایی این تحقیق شمال و شمال غربی بود در تجویز و تحلیل داده‌ها وارد نشد. اما در پراکنش درخت ارغوان تأثیر گذار بود.

بحث

در تحقیق حاضر پس از شناسایی گونه‌های گاهی و نیز جمع آوری عوامل خاکی، فناوری‌گرایانه، مناطق مورد مطالعه به‌جها رویشگاه‌های بندی کردن. در مورد منطقه رویشگاه ایلام به‌بنا شکری که سطح همبستگی با سیلیت، مایزی، نیتریز، کلسیم و فسفر همبستگی مثبت داشته است. رویشگاه دو ایلام، رویشگاه بلوط می‌باشد. که با سیلیت pH و موارد آلی خاک همبستگی مثبت داشته و گونه شاخص درختی این رویشگاه بلوط است. میزانی و همکاران (5) در تحقیق‌های سال 1387 در رویشگاه بلوط در شمال شهر ایلام تأثیر ناشی‌زاده دست‌بافته.

در منطقه رویشگاه‌های ایلام از دو رویشگاه تشکیل شده است. سیلات pH هم‌بستگی الکتریکیی به‌بنا که با سیلیت، همبستگی الماسیم، نیتریز، مایزی، میزانی و تیترژن، نیتریز، پناهی، کلسیم و فسفر همبستگی مثبت داشته و گونه شاخص این گروه به

وحتی (بنه) است.

از نتایج بالا (رویشگاه یک و پاوه) می‌توان نتیجه گیری کرد که مهم‌ترین فاکتورهای مشترک در پراکنش

418
نتایج گیری کلی
با توجه به نتایج دست‌آمده از این تحقیق می‌توان نتیجه گردید که خاک‌های مواد سیستمیک و پاتاسیم در رویکدهای خاصی در شکل‌گیری اثرات بسیار مهمی در اختیار ماکرو و کلیسی و کلیواکه‌های خاک و همچنین تیشر و تعرق گیاهان ایفای می‌کنند. بنابراین نقش عمده‌ای را در توزیع بیوش‌گیاهی مناطق خشک ایفای می‌کنند.

و همکاران (11) در سال 2005 در تحقیقی به نام Enright نتایج مشابهی دست‌یافتند.

در این تحقیق جهت جغرافیایی بیشتر شمالی و تا حدی شمال غربی بود و در طبقه بندی گونه‌ها و رویکدها نیز تأثیر گذار بود. بنابراین در پراکنش گونه ارغوان نیز تأثیر داشت چون در جهت‌های شمالی رطوبت خاک بیشتر و تیشر کمتر از سایر جهت‌های جغرافیایی است و محیط کشت گیاهان لنری رطوبت و زاویه تابش خشک‌سازی و سایر عوامل تأثیر عمده‌ای در ترکیب گونه‌ی دارد تا باید (5) در سال 1387 و همکاران (6) در Badano، منابع

1- تابعی، ج. 1387. درختان و درختچه‌های ایران: انتشارات دانشگاه علم و صنعت ایران. 486 ص.
2- فتحی، م. 1374. اثر تهدید بر زیست‌گاه جنگل‌های غرب، پرورش و سازندگی. 27(6): 42-58.
3- مصداقی، م. 1378. توصیف و تحلیل بیوش‌گیاهی. انتشارات دانشگاه تهران. 280 ص.

Ecological survey *Cercis griffithii* L. tree in west of Iran

Rezaipor M.1, Akbarinia M.1, Salehi A.2, Sohrabe H.1, and Jafare Gh.3

1Forestry Dept., Faculty of Natural Resources, Tarbiat Modares University, Noor, I.R. of IRAN
2 Forestry Dept., Faculty of Natural Resources, Gilan University, Rasht, I.R. of IRAN
3 General office of Environment, Gilan University, I.R. of IRAN

Abstract

In order to ecologically investigate *Cercis griffithii* L. species and recognize its existing sites in West of Iran, boundaries of this species were located on the topographic map and 89 plots with areas of 1200 square meters were implemented. The vegetation type (including tree and shrub species), soil type, and physiographic factors of the region were determined. Using multivariate analysis, four sites were recognized. Results showed that Ilam region has two sites which the first site includes *Cercis griffithii* L. that has a positive correlation with Silt, pH, Mg, K, Ca, and P that together form a group. Two sites include *Quercus brantii* L. that has a positive correlation with Clay, Silt and organic matter that together form a group. Similarly, Paveh region has two sites. Here, like Ilam region, the first site includes *Cercis griffithii* but this *Cercis griffithii* L. had a positive correlation with Clay, Silt, pH, EC, CaCo3, C-O, N, Mg, K, and Ca that together form a group. Two sites include *Pistacia atlantica Desf. subsp. mutica* But this *Pistacia atlantica Desf. subsp. mutica* had a positive correlation with Silt, organic matter; N, K, Ca and P that together form a group. According to the results of this study, it can be concluded that *Cercis griffithii* species in regions with soil types of high amounts of clay, silt, C-O, Ca, and K, are located in steep lands with north directions. Therefore, in order to plant this species in green area, reclamation and enrichment of this species in its natural site and other dry and semi-dry regions requirements of this species must be considered.

Keywords: Ecological group, Quercus brantii, *cercis griffithii* L, Ilaitf aveh