بررسی تنوع زنتیکی نمونه‌های نشانگرهای Nواحی شمالی ایران با استفاده از Aegilops tauschii SSR

مریم حاجی کرم 1، مهدی رضا نقوی 2، علیرضا طالعی و محمد جعفرآبادی 3

1. کرج. دانشگاه تهران. پردیس کشاورزی و منابع طبیعی. گروه زراعت و اصلاح نباتات
2. کرج. موسسه تحقیقات نهال و بذر. بخش زنیک

نام: میترا میلانی 3

تاریخ دریافت: 8/7/2012

چکیده

به منظور بررسی تنوع زنتیکی نمونه‌های Aegilops tauschii جمع آوری شده در 10 جفت تولید شده Aegilops tauschii نمونه‌ها به منظور بررسی تنوع زنتیکی نمونه‌ها تکراری زیرهندار اختلافاتند که در اثر انتهای 10 جفت تنوع زنتیکی نمونه‌ها از آنها جنگید شدی که 150 آل برای تاریخ لوموس شکل (PIC) مشخص شد که دارای دامنه بین 24 آل و میانگین 15/5 آل برای هر لوموس بوده. محتوای اطلاعات بین شکل (WMS) و نشانگرهای نشانگرهای از 12 برای لوموس نشانگر میانگین نشانگر و کمترین میانگین متوسط بین دو نمونه از اختلافات گیلان و فارس (0/1) هم به تعدادی از نمونه‌ها مشاهده شد. روش‌های گروه بندی خوشه‌ای و تجزیه به مختصرات اصلی نتوانست نمونه‌ها را به طور کامل از هم تفکیک کند که نشان دهنده وجود تنوع زنتیکی بی‌پنجره در بین نمونه‌ها می‌باشد.

واژه‌های کلیدی: زیرهندارها، Aegilops tauschii، تنوع زنتیکی، تجزیه خوشه‌ای، ایران

* نویسنده مسئول، تلفن: 021-22752161-21-227530، پست الکترونیکی mnaghabi@ut.ac.ir

مقدمه

آژیلپوسها دارای 22 گونه دیپلونید، تراپلونید و هگزاپلونید بوده (31) و این به این جنس اختلالی جنوب‌تر به فراموش می‌باشد. همه گونه‌های دیپلونید این جنس دارای پراکنش محدودیتی بوده اما گونه‌های تراپلونید و هگزاپلونید دارای سازگاری اکولوژیکی و سیستمی هستند(1). جنس آژیلپوس در شکل کیفی زنوم کندروم و نان نشان دهنده می‌باشد. است.

آژیلپوسها دارای 22 گونه دیپلونید، تراپلونید و هگزاپلونید بوده (31) و این به این جنس اختلالی جنوب‌تر به فراموش می‌باشد. همه گونه‌های دیپلونید این جنس دارای پراکنش محدودیتی بوده اما گونه‌های تراپلونید و هگزاپلونید دارای سازگاری اکولوژیکی و سیستمی هستند(1). جنس آژیلپوس در شکل کیفی زنوم کندروم و نان نشان دهنده می‌باشد. است.

آژیلپوسها دارای 22 گونه دیپلونید، تراپلونید و هگزاپلونید بوده (31) و این به این جنس اختلالی جنوب‌تر به فراموش می‌باشد. همه گونه‌های دیپلونید این جنس دارای پراکنش محدودیتی بوده اما گونه‌های تراپلونید و هگزاپلونید دارای سازگاری اکولوژیکی و سیستمی هستند(1). جنس آژیلپوس در شکل کیفی زنوم کندروم و نان نشان دهنده می‌باشد. است.
یکی از نیازهای اولیه جهت اصلاح گندم، تخمین نوع زنگیکی موجود در میان اجادات و حتی آن می‌باشد. نشانگرهای گوناگونی به صورت نکته یا جدید تایپ جهت بررسی نوع زنگیکی اجادات و حتی گندم به صورت موفقیت آمیز مورد استفاده قرار گرفتند. نشانگرهای مولکولی به دلیل اینکه تحت تأثیر محیط قرار ندارند، بهترین تخمین را از نوع زنگیکی موجود نشان می‌دهند (4). تاکنون مطالعات مختلفی برای بررسی نوع زنگیکی صورت گرفته است. Ae. tauschii

(2000) با استفاده از بررسی نوع موجود جمع‌آوری شده از منطقه فقاز تا آسیب‌زا مرکزی و گیاه‌نگاری کردن داد به تعداد نسبتاً کمی از بررسی‌های گونه پژوهشی می‌باشد. ناگهاس (2007) به همکاران

45 توهد جمع‌آوری شده از 5 کشور را با Ae. tauschii استفاده از نشانگرهای مولکولی SRAP و AFLP مورد بررسی قرار داده و در هر دو نشانگر نمونه‌های آنان با انرژی نمونه را نشان دادند (22). همکاران (2009) به همکاران

57 نمونه آنان که از مناطق شمال غربی، جنوب دریای خزر، شمال شرقی و غرب جنوب آوری شده مورد بررسی قرار دادند. نشانگر SRAP مورد بررسی قرار داده و نوع بالایی از بین نمونه مشاهده کردن همان از بررسی‌های پژوهشی می‌باشد. ناگهاس (2007) به لیلی

Ae. taushii

(2000) به نمونه طالعه فلزی و همکاران (2009) به نمونه آن. به نمونه آنان که از هر دو کشور برای استفاده در برنامه‌های بین‌رلی ارتش بالایی این نمونه‌ها برای استفاده در برنامه‌های گندم نام می‌باشد (4.4.1.1). نسبت به آفات و

Ae. tauschii

در دانشگاه‌های مهم کشاورزی مقاوم بوده (6.4.5.4). به همچنین دلیل این که دارای مقدار بی‌پایان ماند می‌باشد به دلیل اینکه مقاوم به شوری (30) و به خشکی (9) می‌باشد و نسبت به گندم نان از نظر مقاومت به بیماری‌ها و حشرات، اپنسیون‌ها و پروپتی‌های ذخیره ای دانه درای نوع بسته‌بندی می‌باشد و یک منبع معیید برای

Ae. tauschii

تاثیر نوعی از نیازهای اولیه جهت اصلاح گندم، تخمین نوع زنگیکی موجود در میان اجادات و حتی آن می‌باشد. نشانگرهای گوناگونی به صورت نکته یا جدید تایپ جهت بررسی نوع زنگیکی اجادات و حتی گندم به صورت موفقیت آمیز مورد استفاده قرار گرفتند. نشانگرهای مولکولی به دلیل اینکه تحت تأثیر محیط قرار ندارند، بهترین تخمین را از نوع زنگیکی موجود نشان می‌دهند (4). تاکنون مطالعات مختلفی برای بررسی نوع زنگیکی صورت گرفته است. Ae. tauschii

(2000) با استفاده از بررسی نوع موجود جمع‌آوری شده از منطقه فقاز تا آسیب‌زا مرکزی و گیاه‌نگاری کردن داد به تعداد نسبتاً کمی از بررسی‌های گونه پژوهشی می‌باشد. ناگهاس (2007) به همکاران

45 توهد جمع‌آوری شده از 5 کشور را با Ae. tauschii استفاده از نشانگرهای مولکولی SRAP و AFLP مورد بررسی قرار داده و در هر دو نشانگر نمونه‌های آنان با انرژی نمونه را نشان دادند (22). همکاران (2009) به همکاران

57 نمونه آنان که از مناطق شمال غربی، جنوب دریای خزر، شمال شرقی و غرب جنوب آوری شده مورد بررسی قرار دادند. نشانگر SRAP مورد بررسی قرار داده و نوع بالایی از بین نمونه مشاهده کردن همان از بررسی‌های پژوهشی می‌باشد. ناگهاس (2007) به لیلی

Ae. taushii

(2000) به نمونه طالعه فلزی و همکاران (2009) به نمونه آنان که از هر دو کشور برای استفاده در برنامه‌های بین‌رلی ارتش بالایی این نمونه‌ها برای استفاده در برنامه‌های گندم نام می‌باشد (4.4.1.1). نسبت به آفات و

Ae. tauschii

در دانشگاه‌های مهم کشاورزی مقاوم بوده (6.4.5.4). به همچنین دلیل این که دارای مقدار بی‌پایان ماند می‌باشد به دلیل اینکه مقاوم به شوری (30) و به خشکی (9) می‌باشد و نسبت به گندم نان از نظر مقاومت به بیماری‌ها و حشرات، اپنسیون‌ها و پروپتی‌های ذخیره ای دانه درای نوع بسته‌بندی می‌باشد و یک منبع معیید برای
نتایج گردش است. هدف این تحقیق بررسی تنوع زنبوری نواحی شمال ایران و تبعیض و
ترکیب جنسیتی ریزهاوره می‌باشد.

جدول ۱ - نام و میزان نمونه‌های مورد استفاده

<table>
<thead>
<tr>
<th>شماره</th>
<th>کد نمونه</th>
<th>گونه</th>
<th>شماره</th>
<th>کد نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A142</td>
<td>Ae. tauschii</td>
<td>44</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>2</td>
<td>A167</td>
<td>Ae. tauschii</td>
<td>45</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>3</td>
<td>A168</td>
<td>Ae. tauschii</td>
<td>46</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>4</td>
<td>A170</td>
<td>Ae. tauschii</td>
<td>47</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>5</td>
<td>A171</td>
<td>Ae. tauschii</td>
<td>48</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>6</td>
<td>A172</td>
<td>Ae. tauschii</td>
<td>49</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>7</td>
<td>A173</td>
<td>Ae. tauschii</td>
<td>50</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>8</td>
<td>A174</td>
<td>Ae. tauschii</td>
<td>51</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>9</td>
<td>A175</td>
<td>Ae. tauschii</td>
<td>52</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>10</td>
<td>A176</td>
<td>Ae. tauschii</td>
<td>53</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>11</td>
<td>A178</td>
<td>Ae. tauschii</td>
<td>54</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>12</td>
<td>A179</td>
<td>Ae. tauschii</td>
<td>55</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>13</td>
<td>A194</td>
<td>Ae. tauschii</td>
<td>56</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>14</td>
<td>A204</td>
<td>Ae. tauschii</td>
<td>57</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>15</td>
<td>A205</td>
<td>Ae. tauschii</td>
<td>58</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>16</td>
<td>A208</td>
<td>Ae. tauschii</td>
<td>59</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>17</td>
<td>A212</td>
<td>Ae. tauschii</td>
<td>60</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>18</td>
<td>A213</td>
<td>Ae. tauschii</td>
<td>61</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>19</td>
<td>A215</td>
<td>Ae. tauschii</td>
<td>62</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>20</td>
<td>A216</td>
<td>Ae. tauschii</td>
<td>63</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>21</td>
<td>A218</td>
<td>Ae. tauschii</td>
<td>64</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>22</td>
<td>A219</td>
<td>Ae. tauschii</td>
<td>65</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>23</td>
<td>A226</td>
<td>Ae. tauschii</td>
<td>66</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>24</td>
<td>A231</td>
<td>Ae. tauschii</td>
<td>67</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>25</td>
<td>A250</td>
<td>Ae. tauschii</td>
<td>68</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>26</td>
<td>A349</td>
<td>Ae. tauschii</td>
<td>69</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>27</td>
<td>A352</td>
<td>Ae. tauschii</td>
<td>70</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>28</td>
<td>A364</td>
<td>Ae. tauschii</td>
<td>71</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>29</td>
<td>A371</td>
<td>Ae. tauschii</td>
<td>72</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>30</td>
<td>A377</td>
<td>Ae. tauschii</td>
<td>73</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>31</td>
<td>A379</td>
<td>Ae. tauschii</td>
<td>74</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>32</td>
<td>A384</td>
<td>Ae. tauschii</td>
<td>75</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>33</td>
<td>A385</td>
<td>Ae. tauschii</td>
<td>76</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>34</td>
<td>A392</td>
<td>Ae. tauschii</td>
<td>77</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>35</td>
<td>A403</td>
<td>Ae. tauschii</td>
<td>78</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>36</td>
<td>A407</td>
<td>Ae. tauschii</td>
<td>79</td>
<td>A. tauschii</td>
</tr>
<tr>
<td>37</td>
<td>A410</td>
<td>Ae. tauschii</td>
<td>80</td>
<td>A. tauschii</td>
</tr>
</tbody>
</table>
جدول ۲- مشخصات پراپریمری مورد استفاده به همراه تعداد آلف و میزان اطلاعات چند شکلی (PIC)

<table>
<thead>
<tr>
<th>نام آغازگر</th>
<th>پاژر</th>
<th>مولفه</th>
<th>توالی آغازگر</th>
<th>تعداد آلف</th>
<th>اتصال</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMS232</td>
<td>1dl (GA)19</td>
<td>5' ATCTCAACGGCAAGCAGC 3'</td>
<td>5'TGATGACAGCAATCCACCC 3'</td>
<td>10</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>WMS157</td>
<td>2dl (CT)14</td>
<td>5' TGCTGACGCTGCTGCTGCTG 3'</td>
<td>5'GATGAGACACAGAGCTGGGTG 3'</td>
<td>11</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>WMS484</td>
<td>2ds (CT)29</td>
<td>5' ACATCGTTCATCAGAGACCC 3'</td>
<td>5'AGTGTCGTCATGGCTAGGC 3'</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>WMS114</td>
<td>3ds (GA)53</td>
<td>5' ACACACACAAAAATACACCCGG 3'</td>
<td>5'TATCCATGCAATGGGACTGG 3'</td>
<td>9</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>WMS608</td>
<td>4dl (GA)16</td>
<td>5' ACATTGTTGTGTCGCCG 3'</td>
<td>5'GATCCGCTTCGCTAGAGC 3'</td>
<td>18</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>WMS212</td>
<td>5dl (CT)20</td>
<td>5' AAGCAGACTTGTGCTGAA 3'</td>
<td>5'TGCGTAACTTGTTGAAGGAA 3'</td>
<td>15</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>WMS192</td>
<td>5ds (CT)46</td>
<td>5' GGGTTTTTCTCAGATTCGG 3'</td>
<td>5'CGTTGCTAATCTGCTGCTG 3'</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>WMS325</td>
<td>6ds (CT)16</td>
<td>5' TCTTGTGTGCGTTCTTCCCC 3'</td>
<td>5'TTTTACACGGCCAGACGC 3'</td>
<td>12</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>WMS111</td>
<td>7dl (CT)32(GT)17</td>
<td>5' TCTGATGAGCCTCCTCGACTG 3'</td>
<td>5'ACCTGATACGATCCACTCG 3'</td>
<td>25</td>
<td>0</td>
<td>16</td>
</tr>
</tbody>
</table>

مواد و روش‌ها

MoMs: در این تحقیق از ۸۸ نمونه که از ۸ استان شامل گلستان، مازندران، گیلان، سمنان، آذربایجان شرقی، زنجان و اردبیل که توسط باکتری نمی‌گاهی ایران، مؤسسه تحقیقات اصلاح و تهیه نهال، و به‌دست کرده جمع‌آوری شده بودند استفاده گردید (جدول ۱).

نتایج مولکولی: تعداد ۱۰ جفت آغازگر firepower در این بررسی مورد استفاده قرار گرفت که جداسازی این نشان‌گرهای SSR تهیه و به وسیله Roder و همکاران (۲۷) شد.
روش تجزیه به مختصات اصلی (PCA) گروه بندی نمونه‌ها در یک پلات به‌دست می‌آید.

نتایج و بحث

از 10 جفت آغازگر ریزپروتئین‌های مورد استفاده، تعداد 9 جفت آغازگر چندشکلی مناسب نشان داده و نمونه‌های دیگر شناخته نشدند. این تعداد جفت آغازگر چندشکل، در مجموع 150 آلل به دست آمد، به طوری که تعداد آلل برای هر آغازگر از 25 تا 106 متغیر بوده و میانگین تعداد آلل برای هر لدوس 15/5 مشاهده شد (جدول 2). بیشترین تعداد آلل مربوط به آغازگر WMS111 و WMS232 به ترتیب بود. این آلاله‌ها مربوط به 48 بیشترین آلل هر آغازگر ریزپروتئین، مناسب بودند در 14 نمونه، زنی را برای تخیمین نوع زنتیکی نشان دادند. نتایج آغازگرها که تعداد آلل ریزیده نشان داده اند برای بررسی نوع زنتیکی مناسب تشخیص داده می‌شود. میانگین تعداد آللهای مشارکت‌گر در جمعیت (150/40) نسبت به تعداد آللهای (4/3) به دست آمد توسط همکاران (28) بیشتر می‌باشد.

شامل یک مرحله واسرت سازی اولیه در نمونه‌های 94 درجه به مدت 5 دقیقه، 37 جرخه حرارتی که 12 چخمه اول حرارتی به صورت Touch Down نامی بریده شده بود، به این صورت که دامی اتصال آغازگر به رشته الگو 10 درجه سالیانه گراد بالاتر از دامای اتصال واقعی در نظر گرفته شد و در هر چخمه دور اول با کاهش 8/10 درجه، به دامای اتصال واقعی رسید. در 25 چخمه بعد دامای اتصال ثابت (بسیار بیشتر از دامی اتصال آغازگر) و با زمان 30 ثانیه انجام شد. در هر چخمه نیز، زمان و دمای واسرت سازی به ترتیب 30 و 94 درجه در نظر گرفته شد. همچنین زمان و دمای بست رشته نیز به ترتیب 15 دقیقه و 74 درجه بود. محصولات تکثیر شده با استفاده از الکتروفورز زل بین اکستیامید 6 درصد و اسلرات ساز تفکیک و رنگ آمیزی به روش تیبات فنر 15 انجام گرفت.

همچنین تعداد نفر (2) انجام گرفت.

نمره دهی بر اساس وجود باند (1) و عدم وجود باند (0) صورت گرفت. میزان اطلاعات چندشکلی (PIC) با استفاده از فرمول PIC = 1 - \[\sum_{i=1}^{m} P_i^2 \] محاسبه گردید. به طوری که Pi فراوانی آلت‌یابی و n تعداد آلت‌یابی Pi سپس به کمک نرم‌افزار NTSYSpc ماتریس تشابه با استفاده از روش دایس تهیه و سپس دوگانه‌گرام با الگوریتم UPGMA ترسیم گردید. همچنین با استفاده از

![WMS4844](attachment:image.png)

نمونه‌های مورد بررسی در جفت تنشیک WMS4844 و کمترین میزان میزان (P(38) برای آغازگر WMS111، با دست آمد در میزان (P(60) برای آغازگر WMS111 و نیز برای آغازگر WMS111) به همکاران (28) بیشتر می‌باشد.

سپس با استفاده از فراوانی آلت‌یابی، میزان مستحکم کردگی شکل‌(PIC) برای هر آغازگر به صورت جدایی محسوب گردید. همه تیبات آن در جدول 2 آوردند. است بیشترین

فاصله زننده نمونه‌ها را مشخص کرد و می‌تواند در مطالعات بعدی این به عنوان آگاهی‌گری که در تشخیص نوع زننده مناسب است مورد استفاده قرار گیرد. میانگین بدست آمده (0/67) نسبت به مطالعات انجام شده قبلی...

UPGMA

شکل 2- گروه‌بندی نمونه‌های مختلف *Aegilops tauschii* با استفاده از روش دایس و الگوریتم

395
wheat utilizing microsatellites. Genome 43: 661–668.
Evaluation of Genetic Diversity of *Aegilops Tauschii* from Northern Area of Iran Using SSR Markers

Haji Karam M.¹, Naghavi M.R.¹, Taleii A.R.¹, and Aghaii M.J.²

¹Plant Breeding Dept., Natural Resources & Agriculture School, Tehran University, Karaj, I.R. of IRAN
²Genetics Dept., Seed & Plant Research Institute, Karaj, I.R. of IRAN

Abstract

In this study, in order to study genetic diversity in the accessions of *Aegilops tauschii* from Northern area of Iran, 86 accessions of this species selected and evaluated using SSR markers. Ten SSR primer pairs were applied for genotyping assays. A total of 140 alleles were detected across all loci, ranging from 9 to 25 alleles per locus, with an average of 15.5 alleles per locus. The polymorphic information content (PIC) values of the loci ranged from 0.16 (WMS111) to 0.38 (WMS114). Genetic similarity calculated from the SSR data ranging from 0 (many genotypes) to 0.88 (two genotypes from Ghazvin and Gilan) with an average of 0.101. Cluster and PCA analyses could not separate accessions, indicating that there is high genetic diversity among accessions.

Keywords: Microsatellites, *Aegilops tauschii*, genetic diversity, cluster analysis, Iran