استفاده از ژلکه‌های سبز - آبی جدا شده از یک شالیزار در استان گیلان به عنوان کود زیستی

در گیاه برجن

هم سعادت نبا، حسین ریاحی و جواد نفخیاری

تهران، دانشگاه شهید بهشتی، دانشکده علوم زمین

تاریخ دریافت: 1397/10/24

چکیده

جلکه‌های سبز-آبی هتروسیدت از میکروگریمنوسهای آزاد تبت کنند از هوا هستند که به طور طبیعی در مراعات برجن رشد می‌کنند. در این بررسی گروهی از جلکه‌های مایل به شالیزار در استان گیلان در فصول مختلف سال جدیدتر و pH شناسایی گردید و به صورت کود زیستی به گیاه برجن و ژلکه‌های خیسینه‌ای افزوده شد. در این آزمایش pH و رطوبت خاک شالیزار نیز افزایش یافت. در آزمایش گیاهی که با افزودن گرم ژلکه به گیاه خاکی افزوده شد، افزایش وزن گیاه، طول ریشه، تعداد ریشه‌های حجمی، چگالی ذره‌ای و منافذ خاک و میزان مورسی بررسی قرار گرفت. با توجه به آزمایشات صورت گرفته تنها نمونه جلکه هتروسیدت دار جنس A. Spirodes از A. variabilis-4 و A. torulosa-4 osillarioides

بهار و 36 درصد، زمستان (در بهار بیشتر و در زمستان کمتر از Folsom گیاه بود). همچنین در بهار بیشترین تراکم جلکه‌های سبز-آبی در کنار آب و 4 کلمی در محیط خاک و مشاهده شد. در آزمایش اثر جلکه‌های سبز-آبی بر نتایج (Germination) شده با آب و ژلکه زورت شروع به تندیش کرده و میزان رشد گیاهکها و رشد به‌دست آمده از دیده روی پیشرفت از جلکه‌های قهوه‌ای شده با آب یا ژلکه زورت شروع به تندیش کرده و میزان رشد گیاهکها و رشد به‌دست آمده از دیده روی پیشرفت از جلکه‌های قهوه‌ای

واژه‌های کلیدی: کوده‌های زیستی، جلکه‌های سبز-آبی، Anabaena

* h_saadatnia60@yahoo.com

نویسنده مسئول، تلفن نمایش: 09124538809، پست الکترونیکی: h_saadatnia60@yahoo.com
این کودهای زیستی جلبک‌های سیز-آبی هتروسیست در هستند که در شالیزار با هفته‌ای فاوت می‌شوند چون اکسیسیم شالیزار محتوی مناسبی را از لحاظ نور، دما و رطوبت یافته برای رشد جلبک‌های سیز-آبی نسبت به خاک‌های دیگر فراهم می‌کند (۲۷). این موجودات دارای سلول‌های سیز-آبی هتروسیست هستند که در آن آنزیم ویدوزی به نام پروتئز وجود دارد که پروتئز هوا را پس از جدید، ب تشکیل ترکیبات پروتئز در می‌کند (۲۴) و (۲۵).

از خصوصیات دیگر این جلبک‌ها می‌توان به افزایش منافع خاک به عمل داشتن ساختار رشتی و تولید مواد چسبنده، نزدیک‌رخ و جلب‌کننده و افزایش آهیمیت (۲۵) و (۲۶) و (۲۷) افزایش طرفتگی نگهداری آب خاک به دلیل ساختار زغالی (۲۸). افزودن یوگینوس به خاک بعد از مرکز و نزدیک‌رخ کاهش شوری خاک (۴۵) جلبک‌هایی از فرضیات خاک (۴۰) جلبک‌هایی از دندان عقله‌های هرز افزایش سطح فسفات خاک با ترسح اسیدهای آب اشارة نمود (۳۶) اولین بار Fritsch در سال ۱۹۷۰ فراوانی از جلبک‌های سیز-آبی را در مزارع گزارش کرد (۱۵) در سال ۱۹۷۲۵ نیز تعداد جلبک‌های فراوانی در این جمجمه انجام داد (۵) و در نهایت اهمیت جلبک‌های سیز-آبی تثبیت کننده اول در حاصل‌خوری شالیزارها توسط De و Watanabe مواد و روش‌ها

نمونه برداری از یک شالیزار در روستای آرم در کیلومتری شرقعلی‌کمال در استان گیلان و ماه‌های فصل سال بسته گرفت و سپس آزمایشات زیر انجام شد.

خاک pH اندازه‌گیری

۲۰ گرم خاک را با ۱۰۰ میلی لیتر آب مفشر مخلوط کرده ۲-۳ دقیقه هم زده و ۳۰ دقیقه به ب
حالت سکون گذاشتگی، ۲ میلی لیتر از محلولی روبی برداشته شد و با استفاده از pH متر (مدل ۵۰۰، آلمان) pH اندامگیری شد (۱۶).

اندازه‌گیری رطوبت خاک: مقدار معنی‌داری خاک در آون در دمای ۱۰۰ درجه سانتی‌گراد به مدت ۲۴ ساعت گذاشته و سپس وزن گردید. اختلاف وزن نشان دهنده میزان رطوبت موجود در خاک می‌باشد (۱۶).

جداسازی چلیپکا از خاک: سوسپنسریون از آب و خاک با رخت ۱۰ و ۱۰۰، به‌دست آمده، به دلیل رشد چلیپکهای سبز-آبی هتروسیست در محیط کشت فاقد نیتروژن، دو Modified محیط کشت جامد فاقد نیتروژن شامل: (۱) محیط کشت جامد فاقد N

شکل ۱-الف) A. variabilis (ب) A. torulosa (ج) A. osillarioides (د) A. spiroides

استفاده شد. شلتوک برنج ابتدا به مدت ۲۰ روز درون یک پارچه مرطوب خیس خورد (۴). بعد از ۲۰ روز گیاهکهای آنلایزر به آبی و ۲۰ روز گیاهکهای

کشت گلدنی: برای آنالیزهای گلدنی از دو گلدان شاهد بدون جلبک و نیمار (با جلبک) هرکدام با ۳ تکرار
برنگ با ارتفاع 2 سانتی‌متر به گلدهان انتقال یافتند. در هر گلدهان از 5 گیاهک استفاده شد و گلدهان در دمای آزمایشگاه و پشت پنجره (در فصل ناسان) نگهداری شدند. جلبک زندگی یک هفته قبل و یک هفته بعد از انتقال گیاهک‌ها در گلدهانی تیمار اضافه گردید.

<table>
<thead>
<tr>
<th>pH</th>
<th>فصل</th>
<th>بهار</th>
<th>ناسان</th>
<th>زمستان</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>بهار</td>
<td>6.6</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>ناسان</td>
<td>6.6</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>زمستان</td>
<td>6.6</td>
<td>6.4</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1: سلول‌شناسی pH و رطوبت خاک و تراکم جلبک‌های سیرو-آبی در چهار فصل سال

واژن خشک گیاه: وزن خشک گیاه با قرار دادن گیاه به همراه ریشه، در آن در دمای 20 درجه سانتی‌گراد به مدت 48 ساعت محاسبه گردید (200). چگالی حجمی خاک: مقداری خاک در آن در دمای 50 درجه سانتی‌گراد به مدت 24 ساعت گذارش شده نداشت. آن را با خاک کوبیده شد. سپس برش معینی را با خاک بر کردند. وزن خاک درون بشر را اندازه گرفته و بر حجم بشر تقسیم شد (8). وزن خاک حجم ظرف

چگالی حجمی خاک

چگالی حجمی خاک: وزن خشک خشک خشک که در ابتدا 5 گرم بود به وزن آب آب جدا شده تقسیم شد (8).

وزن خاک

وزن آب جدا جا به جای است. وزن خشک خشک که در ابتدا 5 گرم بود

 الوزن خاک

= چگالی خشک در به

= چگالی فرآوری

= چگالی منافع موجود در خاک

آمارهای آماری: آنالیزهای آماری با استفاده از آزمون t مستقل و نرم افزار (9.0) انجام شد.

![شکل 2- تراکم جلبک‌های سیرو-آبی در الاف (بهار، بهار، بهار، ناسان، جدا کننده، ناسان، جا به جای آب، ناسان، جا به جای آب) پایان و 5 (زمستان)](https://example.com/shahre-jahangiri)
نتایج

تاریخ اندما گیری شده خاک در مرحله اول این تحقیق در pH 7.2-7.6 و درصد 39 درصد، درصد 36 درصد بود (جدول 1). تنا نمونه جلبک هتروسیست دار جنس Anabaena با 4 رونده (pH تریپ فراوانی): 1- A. 2- A. torulos a 3- A. oscillarioides 4- spiroides بود (شکل 1). در فصل بهار بیشترین تراکم با 20 و 12 کلمی در محیط کشت الف و ب و در زمستان کمترین تراکم با 5 و 4 کلمی در محیط کشت الف و ب مشاهده شد (جدول 1 و شکل 2). در آزمایش اثر جلبک‌های سبز-آبی بر تندش دانه بذری، شلتوکهای خیسانده شده با آب، بعد از یک روز شروع به جوانه زنی کرد و در طول بیست روز ارتفاع گیاهکها 2 سانتیمتر و طول ریشه‌ها به 1/5 سانتیمتر رسید. شلتوکهای خیسانده شده با آب و ب

جدول 2- اثر جلبک‌های سبز-آبی بر تندش دانه بذری

<table>
<thead>
<tr>
<th>تیمار</th>
<th>نمونه (کیا)</th>
<th>میانکین ارتفاع گیاهک‌ها (سانتیمتر)</th>
<th>میانکین طول ریشه‌ها (سانتیمتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>7</td>
<td>4</td>
<td>0/5</td>
</tr>
</tbody>
</table>

شکل 3- الfw شلتوکهای خیسانده شده با آب-ب شلتوکهای خیسانده شده با آب و جلبک بعد از بیست روز

شکل 4- A گیاه شاهد (بدون جلبک). B گیاه تیمار (با جلبک) بعد از سه هفته از انتقال گیاهکهای 2 سانتیمتری به گلدان‌ها
بحث

تحقیقات گذشته نشان داده که pH بالا و رطوبت جزو عوامل مهم و مؤثر در رشد چلنجها می‌باشند. در حقیقت با افزایش pH و رطوبت تراکم این جلبکها نیز افزایش می‌یابد (14). در این آزمایش بی‌پره به اختلاف بی‌پره فصول مختلف سال می‌تواند، به مرحله pH و رطوبت در حد احتمال عامل اصلی افزایش جلبک‌های سیب‌آبی در بیمارستان می‌تواند به فصول در دیگر سال ذکر کرد. تأثیر به دست آمده در قسمت اول این تحقیق نشان داد که فصل بهار دارای بیشترین جمعیت جلبک‌های سیب‌آبی می‌باشد و در فصل تابستان، در میانه pH و فصل بهار را می‌توان متقابل ترین فصل برای نمونه‌برداری انتخاب کرد. در این فصل شرایط مساعدتری برای رشد جلبک‌ها نسبت به فصول دیگر سال فراهم می‌باشد و در نتیجه جمعیت جلبک‌های نیز بهتر است. با توجه به شاخص زیاد دو محیط کشت اف و ب تفاوت در تعداد گیاه‌ها را می‌توان به‌بینانه نشان داد. زیرا این خصوصیات جلبک‌ها، فردوسی‌کام و مهم از همیشه انتخاب‌نوروزن‌ها حضور دارد (14). با توجه به تحقیقات انجام شده در خصوص بررسی جلبک‌های سیب‌آبی بالکانی از نظر ناحیه این تحقیقات می‌تواند نتایج حاصل از این تحقیق می‌تواند

جدول ۳- تأثیرات جلبک‌های سیب‌آبی بر روی گیاه و خاک

<table>
<thead>
<tr>
<th>نمونه (گیاه و خاک)</th>
<th>تیمار</th>
<th>شاهد</th>
</tr>
</thead>
<tbody>
<tr>
<td>افزایش گیاه (سانتی‌متر)</td>
<td>۳۸ ± ۲۰</td>
<td>۲۰ ± ۱۰</td>
</tr>
<tr>
<td>طول ریشه (سانتی‌متر)</td>
<td>۳۳ ± ۱۷</td>
<td>۲۰ ± ۱۰</td>
</tr>
<tr>
<td>وزن تراکم و سفید (گرم)</td>
<td>۳۵ ± ۱۷</td>
<td>۲۰ ± ۱۰</td>
</tr>
<tr>
<td>وزن تراکم ریشه (گرم)</td>
<td>۳۵ ± ۱۷</td>
<td>۲۰ ± ۱۰</td>
</tr>
<tr>
<td>وزن خشک برگ و ساقه (گرم)</td>
<td>۳۵ ± ۱۷</td>
<td>۲۰ ± ۱۰</td>
</tr>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>پلتین اول (درصد)</td>
<td>۱۰ ± ۴</td>
<td>۶ ± ۳</td>
</tr>
<tr>
<td>پلاتین دوم (درصد)</td>
<td>۱۰ ± ۴</td>
<td>۶ ± ۳</td>
</tr>
<tr>
<td>(درصد)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

این جدول نشان می‌دهد که افزایش گیاه و تیمار در نمونه‌های شاهد بیشتر از نمونه‌های تیمار دیگر است. با توجه به این تحقیق، می‌توان در بخش‌هایی که pH و رطوبت جزو عوامل مهم و مؤثر در رشد چلنجها می‌باشند، در حقیقت با افزایش pH و رطوبت تراکم این جلبک‌ها نیز افزایش می‌یابد (14). در این آزمایش بی‌پره به اختلاف بی‌پره فصول مختلف سال می‌تواند، به مرحله pH و رطوبت در حد احتمال عامل اصلی افزایش جلبک‌های سیب‌آبی در بیمارستان می‌تواند به فصول در دیگر سال ذکر کرد. تأثیر به دست آمده در قسمت اول این تحقیق نشان داد که فصل بهار دارای بیشترین جمعیت جلبک‌های سیب‌آبی می‌باشد و در فصل تابستان، در میانه pH و فصل بهار را می‌توان متقابل ترین فصل برای نمونه‌برداری انتخاب کرد. در این فصل شرایط مساعدتری برای رشد جلبک‌ها نسبت به فصول دیگر سال فراهم می‌باشد و در نتیجه جمعیت جلبک‌های نیز بهتر است. با توجه به شاخص زیاد دو محیط کشت اف و ب تفاوت در تعداد گیاه‌ها را می‌توان به‌بینانه نشان داد. زیرا این خصوصیات جلبک‌ها، فردوسی‌کام و مهم از همیشه انتخاب‌نوروزن‌ها حضور دارد (14). با توجه به تحقیقات انجام شده در خصوص بررسی جلبک‌های سیب‌آبی بالکانی از نظر ناحیه این تحقیقات می‌تواند نتایج حاصل از این تحقیق می‌تواند

Downloaded from ibs.org.ir at 10:44 +0430 on Monday June 29th 2020
ترشح این ماده محقق رشد (ویتامین D3 از جلیقه‌های سیر-آبی) با یادگیری می‌باشد (۳۲).

پاورینگ بینه گیاهی سیز-آبی یک جدید از این گروه پاورینگ نشان داد که این جلیقه‌ها می‌توانند نقش مهمی را در رشد بی‌خانگی بینه داشته باشد. در سال ۱۹۶۷ با ممکنی ریشه گیاه بینه نهالکانتن تیمار شده با گیاه و ریشه گیاه شاهد درصد افزایش در وزن خشک ریشه گیاه بینه می‌باشد کردن (۳۳). این وجوهات علائم بینه این، تغییرات در رژیم ویژگی‌های فیزیکی و شیمیایی خاک داشته که این تغییرات برای گیاه سودمند می‌باشد. همچنین این نتایج مشانسی مثبت جلیقه‌های سیر-آبی بر خاک را گزارش کردن (۳). در این مبحث

سیگارگر«: در انجمن این تحقیق از جنب آقای دکتر داربوش می‌توان افتخار داشت. دولتی دانشگاه شهید بهشتی به دلیل توجه بعضی منابع و آقای حامد وانکی را به دلیل همکاری در ویرایش این مقاله قادرانی مگرد.

7- Banerji, J.C., 1935, On algae found in soil samples from an alluvial paddy field of Faridpur, Bengal. Science and Cultrire, 1: 298-7-99.
12- De, P.K., 1939, The role of blue-green algae in nitrogen fixation in rice fields, Proceedings of
the Royal Society of London, Series B. 127: 121 - 139.
19- Kaushik, B. D., 1987, Laboratory cultivation blue-green algae, associated publishing co,new delhi, pp 70.
32- Venkataraman, G.S., 1972, Algal biofertilizer and rice cultivation, today and tomorrow printers and publishers,new delhi, pp 72.
Using of isolated blue-green algae from a paddy in Gillan province as a biofertilizer in rice plant (Oryza sativa)

Saadatnia H. and Riahi H.
Faculty of Biosciences, University of Shahid Beheshti, Tehran, I.R. of IRAN

Abstract

Heterocystous blue-green algae (BGA) are group of nitrogen fixation free living microorganisms that grow naturally in paddy fields. In this research BGA population of one paddy in Gillan province in different seasons, were isolated, identified and added to rice and soaked seeds as a biofertilizer. In this examination pH and moisture of soil were measured. In another examination, 2g algae were added to rice pots and plant height and total weight, root length, moisture, bulk density, particle density and porosity of soil were surveyed. Anabaena was the only heterocystous BGA found in soil samples with four species: A. spiroides, A. oscillarioides, A. torulosa and A. variabilis. The highest and lowest pH (6.7, Springer & 6.2, winter) and moisture of soil (43%, Springer & 36%, winter) was in spring and winter, respectively. In addition the highest of blue-green algae population in spring (20, 12 in A & B medium) and lowest in winter (5, 4 in A & B medium) were observed. Rice seeds soaked in water and BGA germinated earlier than control seeds and the height of seedlings and roots of treated seeds were more than seeds soaked in water after 20 days. The result of pot culture experiment were: 53% increase in plant height, %66 increase in Roots length, %58 increase in Weight of fresh leaf and stem, %80 increase in Weight of fresh root, %125 increase in Weight of dry leaf and stem, %150 increase in Weight of dry root of seedling grown in pots and %20 increase in Moisture and %9.8 decrease in Bulk density, %4.8 decrease in Particle density, %28 increase in Porosity of soil and there were significant differences in pot treated with BGA as compared with control.

Keywords: Biofertilizers, Blue-green algal, Anabaena, Germination